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Figure S1, related to Figure 1. Dam-Pol II protein is undetectable relative to endogenous 

Pol II. Western blot showing endogenous Pol II levels (217 kDa, black arrowheads) in 

wildtype third instar larvae and third instar larvae expressing Dam-Pol II in all cells. Intensity 

levels were normalised to total protein loaded. No Dam-Pol II protein is detectable in the 

tubulin-GAL4>UAS-LT3-Dam-Pol II lane (predicted size 245 kDa; empty arrowhead). We 

compared the intensity of the band at 217 kDa with the region of the gel at predicted size 

245 kDa for both samples, following background subtraction. The ratio of intensity is very 

similar: control = 2.4, larvae expressing Dam-Pol II = 2.3. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2, related to Figure 5. Pol II occupancy at genes involved in the retinal 

determination network. The majority of the retinal determination network (adapted from 

(Chen and Mardon, 2005) genes are bound by Pol II in the neuroepithelium, in neuroblasts 

or in both. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3, related to Figures 6 and 7. Cell type-specific and temporal differences in RNA 

Pol II occupancy reflect differences in gene expression. (A) and (B) Differential Pol II 

occupancy in the neuroepithelium and neuroblasts. (A’) and (B’) Expression pattern of the 

respective genes in the larval brain. (B’) hairy is expressed in the neuroepithelium of the 

inner proliferation centre (IPC; open arrowhead). (C) Differential Pol II occupancy between 

the early and late larval neuroepithelium. (C’) Expression of dpp in the first instar larval brain. 

(C’’) Expression of dpp in the third instar larval brain. Scale bars represent log2 ratio change 

between Dam-Pol II and Dam (reference) samples.
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Table S1, related to Figure 4. Comparison of Dam-Pol II occupancy with published 

expression data. Literature search for genes reported to be expressed in the optic lobe 

neuroepithelium (determined by antibody staining, RNA in situ hybridisation or enhancer trap 

expression). 

 

 

Table S2, related to Figures 4, 5, 6 and 7. Genes with significant Pol II occupancy in 3rd 

instar neuroepithelial cells, 3rd instar neuroblasts and 1st instar neuroepithelial cells (separate 

excel file).

Gene 
Significant 

Pol II 
occupancy 

Reference 

Tom yes (Egger et al., 2010) 

Cad99C yes (Fung et al., 2008) 

fat yes (Reddy et al., 2010) 

sca yes (Mlodzik et al., 1990) 

sc yes (Egger et al., 2007) 

l(3)mbt yes (Richter et al., 2011) 

tll yes (Yasugi et al., 2008) 

HLHm5 yes (Egger et al., 2010) 

upd yes (Yasugi et al., 2008)  

pnt yes (Yasugi et al., 2010) 

rho yes (Yasugi et al., 2010) 

HLHmγ yes (Yasugi et al., 2010) 

N yes (Egger et al., 2010) 

yan/aop yes (Yasugi et al., 2010) 

Vsx1 yes (Erclik et al., 2008) 

ex yes (Reddy et al., 2010) 

ds yes (Reddy et al., 2010) 

fj yes (Reddy et al., 2010) 

Dll yes (Kaphingst and Kunes, 1994) 

wg yes (Kaphingst and Kunes, 1994) 

dpp yes (Kaphingst and Kunes, 1994) 

arm yes (Hayden et al., 2007) 

Dl yes (Egger et al., 2010) 

shg yes (Orihara-Ono et al., 2011) 

Mcm2 yes (Orihara-Ono et al., 2011) 

neur yes (Boulianne et al., 1991) 

CycA yes (Zhu et al., 2008) 

mnb yes (Tejedor et al., 1995) 

l'sc yes (Yasugi et al., 2008) 

th/Diap1 yes (Richter et al., 2011) 

dpp yes (Kaphingst and Kunes, 1994) 

bi/omb yes (Li and Padgett, 2012) 

ft yes (Kawamori et al.) 

Vdup1 yes (Chang et al., 2010) 

hth yes (Hasegawa et al., 2011) 

lft yes (Mao et al., 2009) 

yki yes (Reddy et al., 2010) 

patj no (Egger et al., 2007) 

mer no (Reddy et al., 2010) 

aPKC no (Orihara-Ono et al., 2011) 

dome no (Wang et al., 2010) 

STAT92E no (Wang et al., 2010) 
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Primer 
name Sequence (5' to 3') 

LT1-Ndam FW GGAATTCATGGGAGGATCAGCTGGATAATAAGGCATGAAGAAAAATCGCGCTTTTTTG 

LT1-Ndam RV GGGAGATCTCGCAGATCCTCTTCAGAGATGAGTTTC 

mGFP6 FW GGAATTCATGAGTAAAGGAGAAGAACTTTTC 

ΔmGFP6 RV CAAAAAAGCGCGATTTTTCTTCATCTTATTACCGCTTCATATGATCAGGGTAAC 

LT2-Ndam FW GTTACCCTGATCATATGAAGCGGTAATAAGATGAAGAAAAATCGCGCTTTTTTG 

Ndam RV GGGAGATCTGCGCCGGCCAGATCCTC 

mCherry FW GGAATTCATGGCAACTAGCGGCATGGTTAG 

mCherry RV CAAAAAAGCGCGATTTTTCTTCATGTTATTATGCGGTACCAGAACCTTTG 

LT3-Ndam FW CAAAGGTTCTGGTACCGCATAATAACATGAAGAAAAATCGCGCTTTTTTG 

mGFP6 RV CAGATCTCCTTTGTATAGTTCATCCATGCCATG 

RpII215 FW GTACGCGGCCGCTCATGAGCACCCCCACGGACTCGAAG 

RpII215 RV GTCTAGATCAGTCTTCGCTCTCCTCGAACGTGG 

 

 

Primer sequences for generating constructs. LT1-Ndam FW and LT1-Ndam RV were 

used to generate pUAST-LT1-NDam. mGFP6 FW, ΔmGFP6 RV, LT2-Ndam FW and Ndam 

RV were used to generate pUAST-LT2-NDam. mCherry FW, mCherry RV, LT3-NDam FW 

and NDam RV were used to generate pUASTattB-LT3-NDam. mGFP FW and mGFP RV 

were used to generate pUAST-NGFP. RpII215 FW and RpII215 RV were used to amplify 

RpII215 for cloning into pUAST-NGFP and pUASTattB-LT3-NDam. 
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